
Pergamon
Int . .f. So/id\ 5;/nli'lurl!s Vol. 34, ~o. 30, pro .N5_\ 3li76, 1997

(' [Y9? ElseY]":I" Science Ltd
All rights reserved. PrintL'd in Great Britain

0020 761U,il}7 S17.00 + .00
PII: 50020-7683(97)00004-8

VISCOUS DAMAGE MODEL FOR TIMOSHENKO
BEAM STRUCTURES

A. H. BARBAT, S. OLLER, E. ONATE and A. HANGANU
Technical University of Catalonia, Edificio Cl, Campus Norte UPC. Gran Capitan. s:n.

Barcelona 08034, Spain

(Received 20 Decemher 1995; in rerisedfimn 26 Novemher 1996)

Abstract-A local damage constitutive model based on Kachanov's theory is used within a finite
element frame and applied to the case of 20 and 3D Timoshenko beam elements. The model takes
into account viscous effects, thus allowing damping to be considered in a rigorous way. A damage
index based on potential energy criteria, useful in evaluating the behaviour of structures or of parts
of structures, is proposed. The procedure is applied to estimate the damage produced by seismic
actions in reinforced concrete building structures, whose response is computed by using a non-lincar
Newmark-type incremental time integration scheme. Three numerical examples are included; one
of them compares results obtained by using the proposed model with results of a laboratory test.
T; 1997 Elsevier Science Ltd.

I. INTRODUCTION

In the case that a urban area is affected by a strong seismic motion, one of the most
important problems is the evaluation of structural safety in that area, starting from the
assessment of the actual damage experimented by structures, As an alternative, this evalu
ation can be performed by numerical simulation of the damage-related phenomena in the
structures of that area. The specific type of structures considered in this paper are reinforced
concrete buildings.

The structural damage will hereafter be defined as the degree of degradation that
allows conclusions about the future capacity of a structure to withstand further loadings.
It will be quantified through a damage index, which is a value of damage normalized to the
failure level of the structure, so that a value equal to I will reflect complete structural
failure,

Different definitions of global damage indices have been given in the literature for
complex structures, generally based on a weighted average of the indices corresponding to
different structural members (DiPasquale and Cakmak, 1989). Other works (Park et at.,
1987) and Bracci et at. (1989) define a damage index for structural members using a linear
combination between a ductility and an energy factor. In this paper, a global global damage
index based on potential energy considerations is proposed. This index is formulated using
a local damage constitutive model, based on Kachanov's theory (1958), and considering
the influence of viscosity, thus including damping effects.

Kachanov's constitutive model has been chosen because it represents adequately the
behaviour of the concrete subjected to monotonically increasing loads. Nevertheless, it is
well-known that the basic Kachanov's theory has limitations concerning the closing of
cracks during the unloading process. In the selection of the model have also been taken
into account the high velocity of convergence and the simplicity of the assessment of its
parameters. It is important to remember that the isotropic damage model considers the
difference between the uniaxial tensional and compressional behaviour by means of the
ratio of the uniaxial compression to the tension strengths. This implies that the shape of
the uniaxial tension and compression curves is the same. Although this type of behaviour
can be found in various geomaterials (Chen 1982; Oller 1988; Lubliner et at., 1989), it
could be considered that for concrete it simplifies the real behaviour. The elasto-perfect
plastic model of Von Mises has been chosen to describe the behaviour of the steel bars.
Obviously, other constitutive models could be employed in characterizing the behaviour of
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both concrete and steel materials. However, the general methodology proposed in the paper
is suitable whichever constitutive model is used.

In this paper, a structural model which applies these concepts to the analysis of beam
structures is developed within the frame of the finite element method. Tangent and secant
damping and stiffness matrices of the visco-damage constitutive law are deduced. Numerical
examples showing the applicability of the proposed procedure are included.

2. STRUCTURAL MODEL

The structure is modelled using CO one dimensional finite elements based on Timo
shenko's beam theory, generalized to 3D. There is only a small difference between the
constant shear strain distribution over the cross-section of the Timoshenko beam theory
and the present one, consisting of the evaluation of i'xy(Y, z) and i'xzt.v, z). In this paper, the
mean shear strains y:~ and y';'z corresponding to the direct Timoshenko beam formulation
are corrected using Jourawski's stress distribution (Gere and Timoshenko, 1984) :t

where A~ = X},A and A: = X,A are the reduced cross-sections of A and X, and Xc are the
stress distribution factors (Gere and Timoshenko, 1984). bey) and b(z) are the width and
the thickness of the cross-section, Jy and J, are inertia moments and S,(z) and Sz(Y) are the
statical moments with respect to the neutral axis of the upper and left portion of the cross
section, respectively. The proposed procedure, without providing the exact solution to the
problem, assures an important improvement of the shear strain evaluation as compared
with Timoshenko's beam theory.

The finite elements have three nodes and six degrees of freedom per node. Due to the
fact that the constitutive model requires information at any point of the element, a secondary
discretization of the cross-section of the beam element is necessary. In the plane case, the
discretization consists of layers [see Fig. I(a)].

In the 3D case, the cross-section of the beam is discretized by means of an orthogonal
non-homogeneous grid of cells [see Fig. I (b)]. This avoids the formulation of constitutive
laws using sectional forces, which is the traditional way to solve the problem, but valid only
in certain particular cases and having the additional drawback of lacking precision. The
sectional forces are decomposed point by point, layer by layer, in stress tensors which are
corrected by using the viscous damage model. The corrected sectional forces are sub
sequently obtained by integration over the section cells. These forces are then used to
compute the residual forces, in order to iterate for equilibrium if necessary.

The relationships between the sectional variables of the problem and the variables
corresponding to a certain point belonging to the mentioned section are described below.
A local coordinate system is considered for the beam, its longitudinal axis x forming a right
triad with the other two axes. The sign convention for translations and rotations is the
usual in classical mechanics. The displacement and strain fields are (Onate, 1992)

U(x, y, z) = S(y, z)uo(x)

/l(X,y, z) = S(y, z)il(x)

(1)

(2)

where the variables have the following meaning: u = {u, 1:, w} T is the displacement vector
of a point belonging to a beam section; /l = {co y:'" r~~} T is the strain vector of a point
belonging to a beam section; Uo is the displacement vector of the 3D beam finite element
corresponding to the central axis of the cross-section; e is the generalized strain vector

hxJY, z) = ',,(Y, z)/G = (Qy/G) (S,(y)/J,b(y)) and yyJy, z) = ',elY, z)/G = (Q)G) (S,.(z)/J,b(z)), where the
sectional shear force can be expressed according to Timoshenko's theory Q,. = GA;'y';',., Q, = GA"'r~~, G being the
shear modulus.
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Fig. I. (a) Layered 2D Timoshenko beam element. (b) 3D Timoshenko beam element discretizcd
with an orthogonal mesh.

corresponding to the central axis of the beam; S is the geometric transformation matrix
relating cross-sectional variables with the point variables.

The well-known equilibrium equations are written using the virtual work principle.
The internal virtual work Lint corresponding to a virtual strain be is expressed as

(3)

where j/' is the volume, d the surface of the cross-section and t the length of the beam
element, (ftot = {(Jx, T xy , T xz } T are the total stresses at the point level, which are defined
in detail later. The total sectional forces uwt = {N" Qy, Q2' T" My, M z } T have been also
introduced in the previous equation as

(4)

A sectional density matrix jJ can be defined, relating the sectional inertia forces with
the acceleration vector Uo which is calculated by deriving twice equation (I) with respect to
time

(5)

where Po is the material density. Equation (5) can be integrated for any distribution of
material properties over the beam cross-section.
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Following standard finite element procedures, the discrete vector of the internal forces
Filii and inertial forces F; are obtained as

F rNT A.. d - ( rNT ANd -).. M"
; = J PU" x = J' P .\ a = a

(6)

(7)

where Nand B are the shape function and strain matrices, a is the vector of nodal
displacements and M is the elemental mass matrix. The internal forces F'lii introduced in
eqn (6) will be analyzed in detail in Section 4, after describing the damage model. Using
now the expressions of the inertia and internal forces, the equation of motion is formulated
as

Ma(t) + Fill/(t) = F(t) (8)

where F(t) is the vector of the dynamic load.
As stated before, the cross-section of the beam is discretized using an orthogonal grid.

Each rectangle of the grid may have different size and different materials, in this case
concrete or steel. For the concrete a visco-damage model and for the steel a simple Von
Mises elasto-plastic model are used. The rectangles are defined by their corners and it is
assumed that all the stresses have a linear variation over each cell of the grid. This implies
solving a system of four equations with three unknowns, defining the equation of the plane
which approximates by minimum squares the variation of each component of the stress
tensor. The same grid can be used to calculate all the other characteristics of the cross
section.

3. VISCOUS DAMAGE CONSTITUTIVE MODEL FOR THE CONCRETE

3.1. General concepts
The solution of beam structures subjected to seismic actions beyond the linear behav

iour has been usually treated using: (a) theories based on plastic hinge formation (Massonet
and Save, 1966). This approach has the drawback of admitting that the damage of a
structure point is dominated by bending criteria, which is true only for some vcry particular
structures. (b) Simulation of beam structures based on the concept ofplastification bending
moment. This procedure is based on formulating simplified curvature-bending moment
constitutive laws (Clough et al., 1965, Aoyama and Sugano 1968).

The last formulations started from representing the behaviour of materials in an
approximate form based mainly on experimental studies. Today, it is required that these
formulations be thermodynamically sustainable. Between those which meet this latter
requirement, the so-called continuous damage theory is generally accepted as an alternative
in the most complex constitutive formulations (DiPasquale and Cakmak, 1989, Oliver et
al., 1990). An application of this model to the dynamic case can be seen in Mazars (1991)
where a column discretized in plane finite elements, subjected to seismic action. is calculated.
The damage models have a rigorous but relatively simple formulation strictly based on
thermodynamics (Sim6 and Ju, 1987). They deal with the non-linear behaviour by means
of one or more internal variables called damage variables which indicate the loss of secant
stiffness of the material and are normalized to a unit value which corresponds to maximum
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Fig. 2. Local damage behaviour.
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damage. Figure 2 shows a simplified unidimensional representation of the behaviour of a
point within a damaged material (Oliver et al., 1990).

The model presented herein is a 3D damage constitutive model based on solid mech
anics and it has a single internal variable (Oliver et al., 1990). Therefore, this is a local
isotropic damage model and it is based on Kachanov's theory (1958), appropriate for
simulating the behaviour of concrete under monotonically increasing loads. Many ideas
inherent to the model have been taken from the works of Sima and Ju (1987), Lubliner et
al. (1989) and Oliver et al. (1990). This formulation has been chosen because it is a
compromise between the complexity of the models describing the behaviour of the concrete
and the versatility needed when dealing with dynamic problems. This insures accurate
results and low cost solutions for the non-linear problems which are the object of this
paper.

The numerical treatment of viscoelastic phenomena in materials can be followed in
detail in Lubliner (1990) and Sima and Hughes (1995). The damping effect of the beam
structure was simulated in this paper by using a model consisting of a damper placed in
parallel with the structure (Barbat et al., 1993; Luccioni et al., 1995).

3.2. Characteristics of the damage model

Free energy and constitutive law. The model is formulated in the material configuration,
for thermodynamically stable problems, with no temperature time variation. For this
specific case the following mathematical form for the free energy is assumed, where the
non-damaged elastic part is expressed as a scalar quadratic function oftensorial arguments
(Malvern 1969; Sima and Ju, 1987; Oliver et al., 1990)

(9)

In (9) the strain tensor s is the free variable of the problem, d (0 :( d:( I) is the internal
damage variable, Po is the density in the material configuration and CO is the stiffness tensor
of the material in the initial undamaged state.

For stable thermical state problems the Clasius Planck dissipation inequality is valid,
whose local lagrangian form is (Malvern, 1969; Lubliner, 1990)

IT. .
~m = - (J e - 'P ~ 0

Po

.:. (I T 8'P) . 8'P.
:=Om = -(J -;;- S- id d ~ O.

Po uS c

This expression for the dissipation rate 2m allows the following two considerations:

(10)

(II)
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Fig. 3. Damage yield function in the principal plane "]-"2'

(a) In order to guarantee the unconditional fulfilment of the C1asius Planck inequality
(Lubliner, 1990), the multiplier of i; which represents an arbitrary temporal variation of the
free variable, must be null. This condition provides the constitutive law of the damage
problem:

I T elf' {81f'}T
~(1 --=O=>(1=Po - =(I-d)C"e=CIl
Po ell Oil

where C is the secant stiffness tensor.
(b) Inserting the last equation into (II), the dissipation is now given by

(12)

(13)

As If' 0 is always positive, eqn (13) states that the damage rate dcannot be negative, i.e., the
damage level can only stay constant or increase and never decrease.

Damage yield criterion. The damage yield criterion is defined as a function of the free
energy of the undamaged material, expressed in terms of the undamaged principal stresses
(17, as

(14)

where the terms of the above equation have the following meaning:

3

L (CJ;')
i=l

r=-3--

L 1(1;'1
i= I

2po(1f'7.ch = I (±CJ;')e,; (If'oh = (1f'7)L+ (1f';')L'
i=l

In these equations (If'7,ch represent the part of the free energy developed when the trac
tion/compression limit is reached and (±x) = ~(Ixi ±x) is the McAuley's function. Taking
into account that the traction/compression strength are.!; = (1f'7E") il 2 andt; = (If'? EO) i 2

,

respectively. Substituting the last definition in eqn (14), it results the damage yield function,
which can be written, according to Fig. 3, as
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(j = [nr + (I - r)] I (a7) 2

i=l
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(15)

(16)

with n = j;!f;. This damage yield function, expressed in the non-damaged principal stresses
space, allows a great number of choices. The advantage of the yield criterium written in
eqn (15) is that any yield function F can be used always as long as it is homogenous and of
first order in stresses (i.e., Mohr~Coulomb, Drucker-Prager, Lubliner et al. (1989), etc.),
in substitution of the equivalent stress iT.

This opens the possibility of applying more accurate and powerful theories within the
theoretical framework given by eqn (15). Nevertheless, the simple form provided by eqn
(16) fulfils the above requirements; besides, it is simple and yields satisfactory results within
the range of assumptions made for this model and therefore will be used henceforward as
the scalar expression defining iT (Oliver et al., 1990). An expression entirely eq uivalent to
(15), proposed by Sim6 (1987) with the aim of simplifying the mathematical deduction of
the damage variable of the model, is the following:

F= G((j)-G(f.) ~ 0 (17)

where G(X) is a scalar monotonic function to be determined. Its shape will be chosen
conveniently for the subsequent development of the damage model.

Evolution of the damage variable. The following law is used to deduce the damage
internal variable evolution rule:

d _ .of _ . dG((j)
- fl (;(j - fl d(f (18)

where f1 is a non-negative scalar denominated damage consistency parameter, analogous
to the plastic consistency parameter ). in standard plasticity theory. .

Similarly to plasticity, a yielding rule F = 0 and a consistency rule F = 0 for a point
subjected to a damaging process are defined. The yielding rule and the properties of G(X)
allow to write G(iT) - G(j;) = 0, what implies iT =.f and consequently

dG((j)

d(j

dG(j;.)

dt:
(19)

From the condition of consistency-that means persistency on the damage yield surface
and from the properties of function G(X), the following equation is deduced:

(20)

and the use of (19) allows to write ii- =./. Equation (20) can be now rewritten and leads to

dG((j) ~ dG(j;).. dGCt:.) dj;. . dG(j;.). dG((j)
~a =~f =~ d(d) d = d(d) fl d(j

~ dG(fJ.
a = d(d) fl·

(21 )

(22)
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Conveniently choosing G(fc) as the function which describes the evolution of the damage
[d = G(j;)], the damage consistency parameter il can be expressed as

. . e(j e(j
{l = (j = fc· = -iJO = -COt.. euo eu" (23)

Substituting this equation into (\8) and (\4), the following expressions which formulate
the temporal evolution of the damage and dissipation variables are obtained:

(24)

(25)

The loading/unloading condition is derivated from the relations of Kuhn-Tucker for
mulated for problems with unilateral restrictions: (a) il ~ 0; (b) F:::; 0 and (c) ilF = O.
From these, if F < 0, then the third condition imposes il = 0 and, if il > 0, then the same
condition requires that F = O.

Definition of function G. From the different alternatives for defining function G(X)
(Sim6 and lu, 1987), the following equation was chosen

G(X) = 1_ G(X)
X

(26)

where G(X) describes a function so that it gives for X = X* the compression initial yield
tension G* and for X ---'> 00 the final strength G ---'> O. Thus, by running all the deformation
path, the point will have dissipated an energy equivalent to the specific fracture energy. In
our work, the exponential function proposed by Oliver et al. (\990), which is shown in Fig.
4, was used

G(x) = X* eA[l-(xix*)] ;
*G(X) = 1- ~ eA[I-(X!x*j].

X
(27)

For a uniaxial traction process under monotonically increasing load, the temporal dis
sipation change is given by (\4), with ij = n(J, and 'Po = ~cfEo8f = ((JY/2E" = (j2/2n2Eo.
Integrating (14) in time we can calculate the total dissipated energy at the end of the
uniaxial traction process as
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and after operating we get

(0'*)2 [I IJS7lQ
.Y == --- - + -

p
o
n2 EO 2 A

giving

A=----
2'('axpon 2 EO I

(0'*)2 2
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(28)

(29)

(30)

where u* is the initial damage stress. Parameter A is never negative, as the material must
dissipate at least the energy accumulated when reaching the initial damage stress u*. Making
the same hypotheses for a uniaxial compression process and postulating that parameter A
must be the same in both cases, it is deduced that

A=----
'2~~axEO 1

(0'*)2 2

and, as parameter A is the same as in (30)

(31 )

(32)

The value of traction maximum dissipation 27wX is an input of the problem and is equal to
the fracture energy density 9f, parameter derived from fracture mechanics as g/ = Gt!Ie,
where Gf is the fracture energy and Ie is the characteristic length of the fractured domain
(Lubliner et al., 1989).

Tangent constitutive law. From (12), the variation of the stress tensor and finally the
unsymmetric tangent constitutive tensor CD of the damage model can be deduced as (Barbat
et al., 1993)

DC'
bC' = -(jd = -C'bdad (33)

where

CD = (I -D)C'.

(34)

In these equations, 1 is the identity matrix of the same order as C' and D is a non-symmetric
matrix, depending only on the stress vector (10 in the undamaged material, as the damage
variable is also implicitly related with the mentioned stress vector through the equivalent
stress u.
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3.3. Visco-elastic effects
The effect of damping on each compounding material of the beam structure is now

considered by means of a Kelvin model (Malvern 1969; Luccioni et al., 1995). Each point
of the material undergoes the same deformation s, so that the total stress (TWI of the system
will be the sum of a non-viscous stress (J and a viscous stress (Tvi." i.e.

where the secant viscous constitutive matrix qS is defined here as

qS =!L C = aC.
E"

(35)

(36)

The viscous tensor definition made in this equation is based on the hypothesis that at the
end of the load process a material point remains completely relaxed, without stiffness nor
cohesion between particles. This leads to the dissipation of the entire energy of the material
point, thus the material remaining unable to withstand any load. For this reason, it is
assumed in this work that the material point does not preserve its initial viscous charac
teristics. However, this hypothesis is flexible and can be adapted to the material type without
affecting the subsequent general formulation. In eqn (36), '1 is the one-dimensional viscous
parameter and ()( is the relaxation time, defined as the time needed by the elasto-viscous
system to reach a stable configuration in the undamaged state.

With this assumption, the behaviour of the system under virtual variations in strains
and strain velocities can be obtained as

Introducing (T~'is = rxC"i; and using relation (34), the visco-elastic incremental strain-stress
relation is obtained as

(38)

where D tis takes the following value (Barbat et al., 1993):

(39)

4. ELASTO-PLASTIC MODEL FOR THE STEEL BARS

As it has been shown before, the steel bars have been represented by two- or three
dimensional steel layers or fibers. The behaviour of these steel layers or fibers is simulated
by means of an elasto-perfectly plastic constitutive model, with a Von Mises yield surface
and associated plasticity. Due to the fact that this model is well known, reference is made
to the classical works of Malvern (1969) and Lubliner (1990).

5. APPLICATION OF THE VISCO-DAMAGE CONSTITUTIVE LAW TO THE STRUCTURAL
MODEL

The secant and tangent form of the visco-damage constitutive model are deduced in
this section. The first one is required because it is used in the integration of the mentioned
constitutive model; the second one allows to deduce the constitutive tensor needed in
establishing the tangent stiffness and damping matrices.
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5.1. Secant equilibrium law
Considering eqn (35), the sectional forces-eqn (4)--can be expressed as

where

Substituting now Ii from eqn (2) and its derivative in (40), the sectional forces become

This equation can be written in the following compact form

where the definitions

C' = f. STCSdA, ii' = f. ST'r'SdA
.w .01
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(40)

(41 )

(42)

(43)

have been used. According to standard finite element analysis (see also Section 2), the
derivative of the generalized strain vector is ~ = Bil; in this case, the sectional forces (eqn
43) can be written in the following form:

&'0, = C'Ba+'1'Bil.

Finally, the vector of the internal forces-eqn (6)--can be rewritten as

Introducing the notations

eqn (45) is rewritten as

(44)

(45)

(46)

5.2. Tangent equilibrium law
The variation of the sectional forces can be expressed starting from (4) in the following

form:

(47)

Writing now the variation of the total stresses a of the system using the egns (37) and (38)
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I5fi,o , = f ST[(I - D,,;JC"]15B dA + I SraC'15t dA.
~ .d

(48)

(49)

Substituting E given by (2) and its derivative in (49), the variation of the section forces
takes the form

(50)

which, using similar developments as those used in Section 4.1., can be written as

where

(51 )

~ D f T "C =,.,. S (I - D,.;JC S dA, (52)

Using these equations, the variation of the internal forces vector is expressed in the following
form

Introducing the notations

(53)

r T ~ D
KTAN = Jr B C Bdx,

eqn (53) is finally written as

DTA,V = D,ee = 1BT ry'B dx

(54)

6. GLOBAL DAMAGE INDICES

The starting point for deducing a global structural damage index is eqn (9), which
relates the damaged part of the free energy 'I' with the non-damaged elastic free energy '1'".
In order to find a global index, a similar expression is deduced by integrating (9) over the
entire volume of the structure as follows:

'I'=(l-d)'I',,=Wp = 1'l'dV= l(l-d)'I' o dV=(l-D)W;: (55)

where D is the global damage index, W~ = St '1'" d V is the total potential energy of the
structure considered as undamaged and Wp is the total potential energy corresponding to
the actual damaged state. Solving eqn (55) for D, the following final relation is obtained:
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(56)

If a damage index for a part or member of the structure is needed (such as floors, columns,
etc) the integration will be performed only over that specific part.

In a finite element scheme, the damage index Dr of a beam cross-section is given by a
similar expression obtained by integrating (9) over the cross-section of the beam, with
\Tf 1 T 0 d S'·
T u = 2e (I/o1 an e = e, I.e,

i?fi/O
I f fDp = 1- i?fi~ol; fi/O I = .ct ST(I,O, dA =w (1 - d)ST (I~ol dA (57)

where i and fi/OI are the generalized strains and stresses in that beam cross-section, respec
tively.

Substituting the value of the free energy in eqn (56), the global damage index will take
the following form:

L aHTf B(c)T fi~:;~ ds
(el ;1.1')

D = 1- --_... -----
'\' a(C)Tf .B(e)T fio (e) d \'L 101 •

(c) I(l'}

(58)

where the sum is performed over the beam elements for which the global damage index is
calculated. This damage index is similar to that proposed by DiPasquale and Cakmak
(1989).

7. NUMERICAL IMPLEMENTATION

The implementation process of the visco-damage model in a finite element computer
program is explained in Tables 1,2 and 3. The implicit time integration scheme of Newmark
for nonlinear problems is described in Table 1 (Barbat and Miquel Canet, 1989: Barbat et
at., 1993). This scheme has been included in the finite element program which has been
used in the present work. The sectional forces and the constitutive tensors are described in
Table 2, which is called at point B-III of Table 1. Table 2 shows the decomposition of the
cross-sectional displacements at a point on the beam axis (eqns 1and 2) into n strain tensors
corresponding to each of the n points of the cross-sectional net (see Figure Ib). Once known
the strain field at each point of the cross-section, the corrected stress values are obtained
integrating the visco-damage constitutive equation (see Sections 3, 4 and 5). In a general
case, in which the damage is not defined through the eqn (27) and function G(X) may not
be integrable in a closed form, an incremental integration approach as described in Table
3 can be undertaken. Starting from these stresses, an inverse transformation is performed
according to eqns (4) and (50) (see Table 2), which allows to "translate" the n stress tensors
into a single set of sectional forces corresponding to the beam axis. The values obtained for
these sectional forces are then introduced in Table 1 to calculate the residual forces in order
to check the convergence of the nonlinear process. Resuming, the block scheme of Table 3
is called within Table 2 for evaluating the constitutive characteristics of the model. Table 2
is called in Table 1, within the point B-III, to compute the sectional forces and the tangent
and secant constitutive tensors.
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Table I. Nonlinear time integration scheme (Newmark)

~ A. First iteration (passage from time instant i to time instant i+ I)
[> lipdate relevant matrices

KSEC = i BTC'Bdx; KlAN = i BT{:DBdx; D m = DTAN = i BTij'Bdx

[> Compute

[> Calculate the first approximations for the time instant i + 1 :

"(1) I il) I. (1 )..
a,+ 1 = fJ M 2 Llai_ 1 - fJ M a, - 2fJ -1 a,

'(1) .Y 'i" ( 1'). ( y) ..ai, 1= /iM!'J.a i+ 1 + 1-
7i

ai+ 1- 2fJ !'J.tai

a;~jl = ~ajlt-)l +3,

~ B. Second and subsequent iterations (seeking the equilibrium for the time instant i + 1)
Loop over global convergence interactions: jth iteration
[> 1. Update relevant matrices

KSEC = i BT{:'Bd,; K TAH = i BT{:DBd,; Dsl'c= i BTij'Bdx=D IA ,

.. I y
K = --M+ ~DT4~+K'AN

fJ!'J.t 2 fJ!'J.t··

[> 11. If the residual forces norm II FY++ I" I ,;; t. end of iterations and beginning of the computations in the next
time step. If not, proceed calculating:

"U-II __
I _), i,I'I)+"U)

41il I - (ai I 3 i+ 1
fJM 2

'U+1) _~~ U-1)+"0)
3 i+ 1 - fJli.tVai+ I a1 +]

[> III. Compute the sectional forces and the ta:1gent and secant constitutive tensors

Cross sectional forces decomposition at each Gauss point (see Table 2)

[> IV. Back to step I

8. NUMERICAL EXAMPLES

Example 1
The simulation of the evolution of the damage process in a reinforced concrete plane

frame (Fig. 5) subjected to dynamic loading is first analyzed.
The frame is 9 m high and 6 m wide and has three levels. The columns have a 30

cm x 30 cm cross-section of reinforced concrete with a 4.35% steel ratio. The horizontal
beams are 40 cm thick and 30 cm wide, with a steel ratio of 5.3%. The structure was
discretized in 45 quadratic three-noded beam finite elements having two Gauss points each.
Thus, the resulting dynamic model has 87 nodes with three degrees of freedom per node.
Each element is one metre long and has the cross-section divided in 20 layers of equal
thickness. The 2nd and 19th layer are made of steel and the rest of concrete. The steel ratio
was controlled by modifying the width of the steel layers. The state of the material is
checked at the interface between layers and afterwards interpolated linearly across each
layer. This gives 40 check points per cross-section in each Gauss point. The materials have
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Table 2. Cross-sectional forces decomposition for each Gauss point

Predicted Stresses
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a
--t>

a TRANSLATOR
equations (1) and (2)

VISCO-DAMAGE CONSTITUTIVE MODEL
see Table 3

1 ~)1~)"'1~)'"~z ~z TX %

I I

H> TRANSLATOR -t> D;ot=I!MTj~]
equations (4) and (51)

Corrected Stresses

the following properties: (a) steel E = 2.1 X 106 daN/cm2
, (J0 = 4,200 daN/cm2

, v = 0.25,
Po = 8 g/cm3

; (b) concrete E = 2.0 X 105 daN/cm2
, (J0 = 300 daN/cm2

, v = 0.17. Po = 2.5
g/cm3

•

The equations of motion governing the dynamic behaviour of the structure have been
solved using the Newmark algorithm with f3 = 0.25 and)' = 0.5. The initial stiffness method
was chosen as nonlinear solution scheme due to the negative definition of the tangent
stiffness matrix when softening effects occur. The time step used was a thirtieth of the
fundamental period of the structure. As the integration of the constitutive law can be done
analytically, an explicit formula [eqns (23), (26)] was used for the local damage index, thus
reducing remarkably the solution cost.

The structure was calculated in two load cases: (a) subjected to a synthetic earthquake
accelerogram (Fig. 6) having a predominant frequency of 4 Hz and a maximum amplitude
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Table 3. Visco-damage constitutive model at layer leveln

I. Input: strains and strain velocities

2. Compute the predicted non-damaged stresses for the load step i and the global convergence iteration j

(0''') V' = (C")\O'eV'

3. General form to integrate the damage constitutive equation (Euler Backward Scheme)
Loop over inner convergence iterations: kth iteration

for: k = 1= O'Vo, = (O'°)i/l

If F (it. d) ~ 0 [eqn (17)] = no damage = GOTO 4

1
else

I

damage

1

[
dG(iT) Nt JIi.k'(D. )(lk) = ell + --(0'0 +0''' ) 0-.

I"!.I I dCf 1/\ (laO i

(C::,W'J = [(I~D,.JC']j'"

k = k + I Go back to 0

4. Compute the visco-elastic part of the stresses aud the total stresses

(q'W" = iX(C'J)'kl

STOP

of 0.175 g and (b) subjected to the same accelerogram with doubled amplitudes. This allows
the simulation of the structural behaviour firstly in a less damaged state [Fig. 7(a)] and
finally in a generally collapsed state [Figs 7(b) and 8].

Figures 8(a) and 8(b) show the distribution of the sectional damage as given by eqn
(56). The damage is located at the joints of the columns with the floors, this being precisely
the expected damage localization for this type of structure and load. As the frame is to fail
mainly by damage of the columns at their joint with the base floor, the damage plots
confirm this prognosed behaviour too. The results of Fig. 9(a) correspond to the undamped
case, while in those of Fig. 9(b) the damping effects are included through a value for the
relaxation time CJ. = 0.001 s.

The results of Fig. 9 show that the maximum sectional damage Dp at the base of the
columns is practically equal to the global damage of the entire structure D. This fact ratifies
the choice of the global damage index as the ratio between the potential energy which the
structure cannot undertake in the damaged state and the potential energy that the structure
should undertake if it were undamaged. The first floor damage is slightly higher than the
global damage of the structure as this floor is the most affected, while the second and third
floors follow in decreasing order as the damage reduces with height. The effect of viscous
damping is reducing amplitudes and damage levels (Fig. 9(b) and 10). This is in agreement
with the well-known real behaviour of structures in a dynamic environment, where the
materials display increased strengths and nonconservative energy dissipation. Nevertheless,
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Fig. 5. Geometry of the studied frame.
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Fig. 6. Synthetic seismic accelerogram corresponding to case (a).

it is necessary to note that, in the simulation process, the damping and the damage have
their origin in the material definition but not in the imposed external actions.

Example 2
The described methodology has been also used to simulate the behaviour of a 3D

frame subjected to the same synthetic accelerogram of Fig. 6, acting in the x direction.
The frame has two floors, is 6 m high and has a squared base of 6m. The columns have

a 30 em x 30 cm squared reinforced concrete cross-section. The horizontal beams arc 30 em
thick and 15 em wide. All the bars have 8% of steel, located symmetrically at the corners,
with a concrete cover of 3 em. The density of the concrete has been increased, to take into
account the effect of the inertia of the entire floor. The beams placed at one of the sides of
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(a)

(b)
Fig. 7. Distribution of sectional damage DI' all over the structure. Case (a), accelerogram with an

amplitude of 0.175 g. Case (b), accelerogram with an amplitude of 0.35 g.
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Fig. 8. Deformed configuration at collapse.
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Fig. 9. Global and floor damage indices. Case (a), damping not considered. Case (b). damping
considered, relaxation time ex = 0.001 s.

the structure (vertical plane y = 6 m) have double density, thus the effect of the global
structural torsion being simulated.

The structure was discretized in 48 quadratic three-noded beam finite elements with
two Gauss points each and the resulted dynamic model has 92 nodes with six degrees of
freedom per node. The elements corresponding to the columns are one metre long and
those corresponding to the beams are two metres long. All the cross-sections are discretized
by means of a lOx 10 grid, appearing thus 400 grid corners per Gauss point at which the
state of the material is checked. The materials have the same properties as in Example 1.

The equations of motion have been solved using Newmark's step by step algorithm
for f3 = 0.25 and}' = 0.5. Four deformed shapes of the structure during the earthquake can
be seen in Fig. 11. Figure 12 shows the distribution of the sectional damage in the structural
elements. The beams are damaged first, due to their higher inertia and smaller stiffness. The
columns are highly damaged at their lower part, as expected. It can be observed in Fig. 13
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Fig. 11. Deformed shapes of the frame at different time instants during the earthquake.

that both floors are damaged almost simultaneously and that the three compared damage
indices have a similar time evolution.

The computational effort required to solve the examples 1and 2 is evaluated in number
of multiplication operations per element and iteration. This number does not take into
account the cost of solving the linear systems of equations, but only the evaluation of the
residual forces. For Example 1, which uses layered Timoshenko beam elements, this number
is of the order of 28,000. The computer time required to solve completely this example was
of half an hour in a CONVEX C3 computer. For Example 2, that is for the 3D Timoshenko
beam elements, the number of operations was 144,000 and the computer time used in
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solving the complete problem was 7 hours in a CONVEX C3 computer. Note that for 3D
hexahedrical elements with 20 nodes, the number of operations would be 3.3 times higher.

Example 3
The object of this example is the comparison of results obtained by using the damage

constitutive model described in this paper with the results of a quasi-static laboratory test
performed by Vecchio and Emara (1992) on a reinforced concrete frame. A numerical
simulation of the behaviour of the tested frame, but using an elasto-plastic constitutive
model, has been already performed by Oller et al. (1996). A complete description of the
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Ex erimental results
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Fig. 15. Comparison of experimental results with results obtained by using the proposed model and
an elasto-plastic model.

geometrical and mechanical characteristics of the frame, as well as of the loads, is given in
Fig. 14,

The laboratory test consisted in applying monotically increasing vertical loads of the
two columns (see Fig. 14), which produced thus their pre-compression, This effect had as
a result that the damage appeared in the horizontal beams. A horizontal force has been
applied afterwards on the beam of the second floor. This force has been increased until the
structural failure occurred, The curves in Fig. 15 relate the horizontal forces and dis
placements for the beam of the second floor and correspond to the laboratory test case and
to the computer simulation using an elasto-plastic model (Oller et ai" 1996) and the damage
model proposed in the present paper. Good agreement between the experimental and
simulated results can be observed, Although the elasto-plastic model fits better the exper
imental results, its much higher computational cost (approximately twice) makes adequate
the use of the damage model.
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The simplified visco-damage constitutive model developed has proved to have good
performance in describing the nonlinear behaviour of reinforced concrete building structure
under dynamic load. The model has been incorporated in a finite element scheme using 2D
and 3D Timoshenko beam elements discretized in a grid of rectangles of concrete and steel
in order to approximate the nonlinear behaviour of reinforced concrete beams. A global
damage index was deduced from the local damage index supplied by the constitutive model.

A reinforced concrete building structure, under both non viscous and viscous regimes,
subjected to seismic actions, has been solved and satisfactory results were obtained. It is
shown that the effect of considering the viscosity is of great importance. An interesting
property of the global damage index is that of allowing the decision of the state of the
structure in what regards its failure mechanisms. The model permits the identification of
the mechanism of collapse by observing the local damage indices and continuous com
parison with the global one. When, during a damaging process, the global index gets close
to the maximum local damage and the rest of the points of the structure stop degrading,
the critical points of the structure has been identified. The failure of these points leads to
the formation of a failure mechanism, i.e., collapse of the structure. This is important from
an engineering structural retrofitting point of view.

The model, in its present form, has two major drawbacks: first, it does not provide
information about permanent deformation, which is a well-known feature of non-linear
materials and second, it does not discriminate between traction and compression damage,
thus being unable to simulate "crack closure". These two problems are currently under
study and solutions are already in sight.
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